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ABSTRACT

Using the radiative transfer equations in the form giveﬁ by
Elsasser, R(u,T) tables needed to determine the atmospheric radia-
tive flux i{n the 6.3 to 8.2 micron interval were computed. Values
of constants, etc., used by Elsasser (1960) were used. Flux com-
putations were made by a numerical integratioh of R(u,T) using the
moisture and temperature distribution given by the radiosonde sound-
ing of 29 April 1959 at Holloman Air Force Base, New Mexico. Com-
parisons were mu > with balioon meacurements made by Strong at the
same time and in the same spectrum inﬁerval. The computed net flux

was fcund to agree with the measured flux within reasonable limits.

ils
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INTRODUCTION

Radiation charts, based on laboratory measurements and theoretical
considerations, have been constructed by Migge and MYller (1932), MYller
(1943}, Elsasser (1942, 1960), Yamamoto (1952), and others; and from
atmospheric radiation measurements by Brooks (1941) and Robinson (13%47).

The charts constructed theoretically are all based on one transform

or another of the same fundamental equation of radiative transfer:

© u'l‘
F=-fdvf39—v(ux,)du (1)
vVdu £
(o} u
o]

where F is the radiative flux; V is the wave uumber; Bv is the wave
number dependent black body flux; u is the absorbing path length; L

is the absorption coefficient; and Tf(uL) is the transmission function,
expressed as a function of the absorbing path length u, and varying
abgsorption coefficient L.

The solution of this equation cannot be found analytically since
the relationship between temperature and path length is an empirical
one, varying from one sounding to another. A graphical or numerical
method c¢f solution must be used. Migge and M8ller (1932) devised a
method of graphical integration which they applied to equation (1).
MYller (1943) used the same process. Elsasser (1942) used a similar
metnod, bui made a change in the form of the equation so that temper-
ature, instead of the path length, was mdde the independent variable.

The final form of the eguation used by Elsasser (1942) was:

[\ dBv
F *k/;T\j I Tf(gL) dv = | Q(u,T) 4T (2}
C o C
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The closed path of integration C is defined by an existing atmospheric
distribution of temperature and moisture. The integration wsas performed
by the measurement of areas on a chart.

In his later wofk Elsasser (1960) has largely abandoned the graph-
ical method of flux computations and has put increasing emphasis on

nunerical methods. He has defined a new quantity:
dB
R(u,T) = 37 - Qu,T) 3

which is a measure of the amount of energy absorbed rather than the
amount eritted. To a great extent, he has been able to replace theoreri-
cally calculated transmission functions by laboratory measurements madc
in the early 1950's.

One of the problems foremost in the use of radiation charts is
the question as to whether or not the charts in fact permit accurate
calculation of radiation in the atmosphera. 1In order partially to
check this question, at least insof&r as the portion of the Elsasser
(1960) chart within a narrow wave length interval is concerned, we chose
to compare it with measurements made by Strorng (1959). Inasmuch as
Strong's interval of measurement (8.2p to 6.3u, i.e., 1220 cm—l to
about 1580 cm-l) did not match Elsasser's interval for the 6.3u band
(1220 to 2280 cm-l), we repeated Elsasser’s chart calculation for Strong's
interval (i.e., 1220 to 1580 cm 1).

Thus, we have calculated an Elsasser type chart to match the Strong
measurements, and for the purpose of checking Elsasser's method of cal-

. L '
CLlLaLLOu whdasnol DLULTONE 5 MEEASUL Caucites .
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CALCULATION METHODS

The methods, equations, and constants used by Elsasser (1960) were
used exclusively in our calculations. Only the limits of integration
were changed. Simpson’s rule for numerical integration and a subinter-

val of 20 <:m"1 were used for all equations.

Transmission Functions.

No attempt was made to find transmission functions theoreticaily.
The laboratory measurements of Daw (1956) were used as tabulated by
Elsasser (1960).

For the purpose of this work, intermediate values of the Daw trans-
mission functions were obtained by means of a second degree polynomial
interpolation (Milne, 1949) to give valuesg for each integration interval
in v, Logarithmic interpolation on u was used to determina the trazns-
mission functions for each oneftpnth increment in loglou.

The beam transmission T(ul) was changed to slab transmission Tf(uL)
by means of the relationship

Te (log uL) = 7{log uL + 0.20) {4)

as recommended by Elsasser.

Absorption Coefficients.

The transmission fungtion T_ is a function of L, the generalized

f
absorption coefficient, as well as the path length u. This absorption
coefficient is in turn a function of the tcmperature. 1In terms of
change from a reference temperature To’ Elsasser glves this temperatu.e
'dependence to be:

log L(T) = log L(TO) + A log L (5)

A log L is given by:
T -7 T

A log L = ~a



Equations (5) and (6) were evaluated using the same values of

constants as published by Elsasser (1960).

Black Body Flux Change With Temperature.

The black body flux is given by Planck's law:

3

Pv
B = ——— (7)
eqy/T-l

The derivative of this flux-with respect to temperature is:

dB 2 4 x

v_ P ITxe (8)

dT q3 (ex _1)2

In this equation q = 1.4389 cm degree, p = 3.7412 erg cm2/sec, and

x = qv/T. Integrated values of dBv over the interval were tabulated

, dT
*  for every 10C temperature.
R(u,T) Values.
Values of
dBV
R(u,T) =&/\ T [l - Tf(uL)] dv %)

were computed and tabulated for 10° increments in temperature from
-80°C to 40°C and for two-tenths increments in 1og10u from minus six

to one.

Band Area Correctionm.

The band area correction factors A/A1 obtained by Elsasser were
assumed to have the same value for this portion of the 6.3u band as
they had for the entire 6.3un band, for which they were originally
computed. These correction factors were interpolated linearly for onc-
tenth increments in log u, and each R(u}T) was multiplied by the approp-

riate factor. Elsasser's values were modified slightly to make the R(u,T)

values for small log u values more consistent.
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Table 1. Band area correction factors.

log u
-6 -5 -4 -3 -2 -1 0 +1
Elsasser - 4,2 1.7  1.18 1 .94 1 1
Adopted 5 3 1.7 1.18 1 .94 1 1

Off Chart Areas.

The contribution to the radiative tranzfer for temperature of the
absorbing medium from absolute zero to -80°C was computed by numerical
integration using (8) and (9), and tabulated separately. Since the
digital computer placed a restriction on the size of x in (8), the
actual integration was performed from T = 49°K to 193°K. The error
involved in assuming dB/dT equal to zero for temperatures from zero
absplute to 49 degrees absolute was negligible since ex/(ex - 1)2 for
1argevx (i.e., small T) is extremely small,

The off chart areas were determined for each five-tenths incre-

ment in 1og10u.

Black Body Flux,

The black body flux over the interval

1580
J qu/T_l

1220
was computed and tabulated for every two degrees temperature from -80°¢
.to 40°C.
RESULTS
Calculations of the net flux at various levels were made using

the radiosonde sounding of 29 April 1959 at Holloman Air Force Base,
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New Mexico with two different moisture distributions being assumed above
560 mb (16,000 ft). The radiosonde.indicated motorboating above that
level. In assumption 1 we assumed a linear decrease in relativé humid-
ity from 25% at 560 mb to 10% at 250 mb. Above 250 mb a constant mix-
ing ratio of 0.02 g/kg was used. In assumption 2 a constant relative
humidity of 5% was assumed aﬁpve 560 mb. The resulting sounding data
ar: given in Table 2.

The values obtained in ghis wvay were compared with the balloon
measurements made by Strong (1959), in this spectrum interval at the
-game time the soundiﬁg was taken. The comparisons are shown in Table
3 and Figure 1. The computed net flux values agree with Strong's
ovserved values as closely as could be expected with the method used.
The 15,000 ft level (580 mb) shows the greatest discrepancy, approxi-
mately 5 w/mz, or 25% of the measured values. At the next two higher
levels (500 mb and 331 ﬁb) the difference is approximately 2 w/mz, or
about 10% of the measured values. The higher levels in the dry air
extrapolation (2) are within 1 w/mz, or about 5% of the measured values.

The differences are believed due to the uncertainty of the assumed
moisture distribution in the motorboating region. For example, it would
seem that drifting atmospheric regions (or 'clouds') of greater or less
humidity during the Strong flight may be indicated by the Strong data,

independent of our calculations.

CONCLUS ION

csults are uncertain to the degree influenced by the humidity

H

Cur
evtrapolation. On examination of the computed flux values under both
assumptions, it is iound that the higher flux values are associated with

the assumed dryer atmosphere. These values alsc agree mcre closely with
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Table 2. Radiosonde sounding for Holloman AFB, New Mexico.
29 April 1959 0900 GCT
Pressure Temp. 4 92 Pressure Temp. 9 i)
(mb)  (°C) g/kg g/kg (mb)  (°C) g/kg g/kg
873 12.5 2,568 2.568 150 -65. 0.020% .001%*
863 2.9 4,499  4.499 129 -67. 0.020% .001*
850 20.5 4.669 4.669 126 -67. 0.020%* .001*
827 20.0 4.300 4.300 118 -66. 0.020%* .001*
700 9.0 3.231 3.231 101 -68. 0.020%* .001*
696 8.6  3.151  3.151 85  -64. 0.020%  0.002%
580 -4.6 2,074 2.074 71 -66. 0.020%* .002%
560 -3.8 1.236 1.236 66 -65. 0.020% .002*
500 -9.2 0.836* 0.193* 57 -60. 0.020%* .005%
488 -10.5 0.667% 0.175% 55 -62. 0.020% .004%*
400 -24.5 0.210* 0.066* 47 -60. 0.020* .007%
331 -36.0 0.075% 0.028* 45 -57. 0.020%* .011*
300 -41.5 0.044% 0.017* 42 -57. 0.020%* ,011*
282 -45.0 0.025% 0.012% 38 -53. 0.020%* .020%
250 -51.1 0.020%  0.004%* 23 -56. 0.020% .019%
235 -54.0 0.020% 0.003* 23 -49. 0.020* .056%
200 -60.0 0.020%  0.002* 21 -51. 0.020%* .051%*
170 -63.9 0.020* 0.001%* 19 -49, 0.020%* .066%
161 -64.9 0.020* 0.001%*

*Estimated due to motorboating.
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Strong's measurements. If trial and error estimates of different atmos-
pheric humidity distributions were to be assumed for that part of the

sounding above 560 mb, it is believed that the calculated flux values

at most levels could be made as close to Strong's measured values as

desired.
If the actual moisture distribution could have been measured
accurately in the region of the atmosphere where the sounding was re-

ported motorboating, it is our opinion that the computed values would

* have approximated Strong's measurements.

RECOMMENDATIONS

This investigation further demonstrates the need for more accurate
measurements of humidity than are to be had from the standard radiosonde
equipment, especially in regions where the moisture content of the atmos-

phere is so low that the present radiosonde indicates "motorBoating”.
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Explanation of Table 4

‘The tabulated values of R(u,T) are in Burroughs floating point
notation, just as they were printed by the digital computer. Each
ten digit numbe? consists of a two digit "exponent' (50 + power of
10) and an eight digit decimal "significant figure', with the decimal
point understocod to the left of the first significant digit.

The following exampleskillustrate the reading of Burroughs
floating point numbers:

1. 5127689543

51 - 50 = 1, 161 x .27689543 = 2.7689543

2. 4587543129

49 - 50 = -1, 10" x .87543129 = 0.087543129
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Table 5. Black Body Flux in wat:ts/met:er2 over the interval
6.34 to 8.2 .
0.0 2.0 4.0 6.0 ’ 8.0

30°%C | 49.328 51.485 53.709 55.998 58.353

20°¢C 39.483 41.329 43.236 45,204 47.235

10°¢ 31.149 32.680 34,296 35.967 37.696

0% 24.115  25.414  26.763 28,163  29.615

- 0% 24.115 22.865 21,664 20.509 19.400

. -10% 18.336 . 17.315 16.338 15.401 14.506

-20°c 13.650 12.832 12.051 11.307 10.596

;30°c 9.923 9.281 8.671 8.092 7.543

-a0’c 7.023 6.531 6.066 5.627 5.213

-an’c 4.823 4.456 4.111 3.787 3.484

-60°¢ 3.200 2.934 2.687 2.456 2.241

-70% 2.041 1.856 1.684 1.525 1.379
-80°¢ 1.244
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